

1882 Hantzsch dihydropyridine

synthesis A. Hantzsch Heterocycle formation Produces

1,4-dihydropyridines (DHPs), or "Hantzsch esters", as isolable intermediates that can then be oxidized to pyridines.

R-CHO+2 R' OR'' NH_3 R''OOC R' R'

Knorr pyrrole synthesis L. Knorr

Heterocycle formation Used to create substituted pyrroles through reacting an α-amino-ketone and a compound containing an electron-withdrawing group e.g. an ester to a carbonyl group.

Reformatsky reaction S. Reformatsky Reactions involving carbonyl compounds Condenses aldehydes or ketones with α -halo esters using metallic zinc to form β-hydroxy-esters

Pomeranz-Fritsch reaction C. Pomeranz and

P. Fritsch

Heterocycle formation Condensation of benzaldehydes or arylketones with aminoacetaldehyde acetals, it is used to synthesize isoquinolines.

1886

Gattermann and Gattermann-Koch formylation

. Gattermann and J.A. Koch Electrophilic aromatic substitution

1897

reactions Creation of a formyl (aldehyde) functionality by treating with a mixture of hydrogen cyanide (HCN) and hydrogen chloride (HCl) in the presence of a Lewis acid catalyst such as AlCl₂.

Fries rearrangement K. Fries and colleagues

Electrophilic aromatic substitution reactions Preperation of hydroxy aryl ketones through transformation of phenolic esters via Lewis acid catalysis.

Ullmann reaction

F. Ullmann Transition metal-catalyzed

couplings Traditionally the Ullmann reaction refers to the synthesis of symmetric biaryls via copper-catalyzed coupling at high temperatures (200 °C).

1909

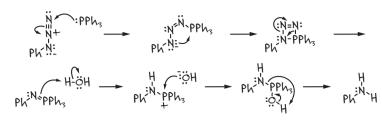
Prilezhaev reaction N.A. Prilezhaev

Electrophilic addition reactions Reaction of an alkene with a peroxy acid (often meta-chloroperoxybenzoic acid (m-CPBA), due to its stability and good solubility in most organic solvents) to form epoxides.

Pictet-Spengler tetrahydroisoquinoline synthesis

A. Pictet and T. Spengler Heterocycle formation

An important acid-catalyzed transformation for the synthesis of tetrahydroisoguinolines from carbonyl compounds and β -arylethylamines.


synthesis K.Hoesch and J. Houben Electrophilic aromatic

substitution reactions This reaction is a type of Friedel-Crafts acvlation with hydrogen chloride and a Lewis acid catalyst to prepare an aryl ketone from reaction of a nitrile with an arene compound.

1919

Staudinger reaction H. Staudinger Piesuner and J. Meyer

Reduction reactions Creates primary amines via the reaction between an azide and phosphine, which form a reactive aza-ylide as an intermediate that is hydrolyzed spontaneously.

Meerwein-Ponndorf -Verley reduction

H. Meerwein. W. Ponndorf and

A. Verley **Reduction reactions**

Hydrogenation which does not require the use of hazardous pressurized H_o but utilizes available, inexpensive, and easy-to-handle hydrogen donor molecules to carry out the substrate hydrogenation.

Oppenauer

oxidation R.V. Oppenauer Oxidation Selective oxidation of secondary alcohols to ketones reaction takes place in the presence of [Al(i-PrO)] in an excess of + 1954

1946

colleagues

Oxidation

1939

Meerwein

H. Meerwein

Free radical reactions

A powerful tool for the diverse

functionalization of alkenes through

addition of an aryl diazonium salt

(ArN_aX) to an electron-poor alkene

usually supported by a metal salt.

arylation

Jones oxidation

E.R.H. Jones and

Used to convert primary

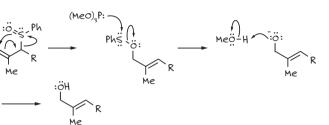
acids or secondary alcohols

into ketones using chromic

alcohols into carboxylic

acid (Jones Reagent).

1964 + Paterno-Büchi reaction Eschenmoser - Claisen


E.P. di Sessa and G.H. Büchi rearrangement A. Eschenmoser Pericyclic and photochemical reactions Formation of oxetanes through the Pericyclic and photochemical reactions photochemical [2+2] cycloaddition of a carbonyl with an alkene.

Produces a γ,δ-unsaturated amide when an allylic alcohol is heated with N,N-dimethylacetamide dimethyl

Mislow-Evans rearrangement K. Mislow and D. Evans Pericyclic and photochemical reactions

A general application for the preparation of trans-allylic alcohols from allylic sulfoxides in a 2,3-sigmatropic rearrangement.

Keck radical allylation M. Kosugi and J. Grignon Free radical reactions

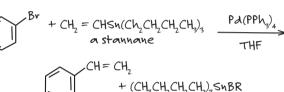
Used for the conversion of aldehydes into homoallylic alcohols. 1974

Schwartz hydrozirconation

D.W. Hart and J. Schwartz

Electrophilic addition reactions Describes the use of the reagent Zirconocene hydrochloride otherwise known as zirconocene chloride hydride, a metallocene used for various transformations of

alkenes and alkynes.


Swern oxidation

D.Swern and co-workers **Nucleophilic substitution reactions** A mild oxidation that converts a primary or secondary alcohol to the corresponding aldehyde or ketone using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine.

Stille cross-coupling reaction J.K. Stille

Transition metal-catalyzed couplings Palladium catalyzed carbon-carbon bond formation via the coupling of an organotin compound with a variety of organic electrophiles.

1979

Suzuki cross-coupling reaction

A. Suzuki Transition metal-catalyzed couplings

Palladium catalyzed carbon-carbon bond formation where the coupling partners are a boronic acid/ester or equivalent and an organohalide.

Noyori asymmetric hydrogenation

R. Noyori Electrophilic addition reactions The asymmetric hydrogenation of aldehydes, ketones and imines catalyzed by Ru(II)-BINAP and

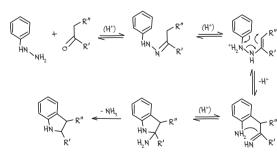
related ruthenium complexes

Shi asymmetric epoxidation

Y. Shi Electrophilic addition reactions

Synthesis of epoxides from various alkenes using a fructose-derived organocatalyst with Oxone as the primary oxidant.

Key named reactions in organic chemistry


1887 Gabriel synthesis

S. Gabriel **Nucleophilic substitution**

reactions Traditionally using potassium phthalimide transforms primary alkyl halides into primary amines.

1883 Fischer indole synthesis E. Fischer Prize Winn 1902

and F. Jourdan **Heterocycle formation** Generates aromatic heterocycle indole from a (substituted) phenylhydrazine and an aldehyde or ketone under acidic conditions.

1877 Friedel-Crafts acylation and alkylation reaction

Electrophilic aromatic substitution reactions Acylation or alkylation of an aromatic ring via reaction with an acyl or alkyl halide in the presence of a strong Lewis acid typically aluminium chloride.

C. Friedel and J.M. Crafts

oxidation A. Baeyer and V. Villiger **Nucleophilic substitution**

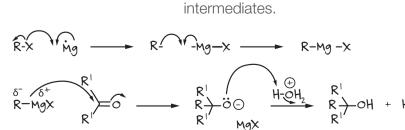
Generation of an ester from a ketone or a lactone from a

Knoevenagel condensation E. Knoevenage Reactions involving carbonyl compounds

reactions

Often used to generate α,β -unsaturated ketones of an active hydrogen dehydration reaction in which eliminated.

cyclic ketone using peroxyacids or peroxides.

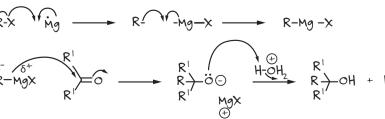

through nucleophilic addition

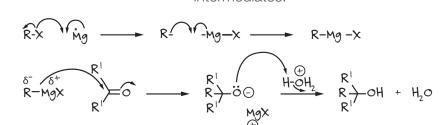
1906 Tishchenko reaction

alkoxides or sodium alkoxides generates

1900

compounds aldehydes or ketones, other organometallic or




V. E. Tishchenko Nucleophilic substitution

Catalysed by aluminium the ester from the corresponding aldehyde.

Grignard reaction V. Grignard Prize Winne Reactions involving carbonyl

Some important applications are the synthesis of alcohols, monocarboxylic acids, and organometalloid compounds via organo magnesium

1913 Clemmensen reduction E.C. Clemmensen Reduction reactions Reduces aldehydes or ketones to

1911 Wolff-Kishner reduction N. Kishner

> and L. Wolff Reduction reactions Converts carbonyl functionalities into alkanes. It is often used to remove a carbonyl group after it has served its synthetic purpose of activating an intermediate in a preceding step.

1919 Wohl-Ziegler bromination A. Wohl and

K. Ziegler Prize Winner Free radical reactions Generates allylic and benzylic bromides through allylic or benzylic bromination of hydrocarbons using the reagent N-bromosuccinimide combined with

a radical initiator.

amalgam and concentrated hydrochloric acid. 1917 :0: :Ö-Zn :Ö-Zn Zn, HCI
Ph Me Ph Me Zu H-Ci:

H ZuCi

Ph Me

Ph Me

Ph Me Mannich reaction C. Mannich

alkanes in the presence of zinc

Reactions involving carbonyl compounds Formation of a β-amino-carbonyl compound, also known as a Mannich base, through amino alkylation of an acidic proton next to a carbonyl containing functional group by formaldehyde and a primary or secondary amine or

ammonia.

1941 Nazarov cyclization N. Nazarov

and G. Geissler Pericyclic and **Reactions involving** carbonyl compounds photochemical reactions Preparation of alkenes Used in the synthesis of through reaction of an cyclopentenones from divinyl ketones, it is a powerful tool aldehyde or ketone with a triphenyl phosphonium to create 5-membered rings.

> ylide (often called a Wittig Ph₃p + (i): N(i-Pr)₂ - Ph₃p + (i): O: Ph₃p + (i): Ph₃P-Ö:)
> Me "Ph

1950

Wittig reaction G. Wittig Prize Wind 1979

1939

Hunsdiecker reaction C. and H. Hunsdiecker Free radical reactions

Forms alkyl bromides via the decarboxylation of mercury or silver salts of carboxylic acids by treating with bromine. The alkyl bromide contains one fewer carbons than the carboxylic

1937 Overman rearrangement L. Overman

Generating allylic trichloroacetamides

alcohols it has found application in

asymmetric synthesis.

Pericyclic and photochemical reactions

through an imidate intermediate from allylic

1958 Simmons-Smith cyclopropanation H.E. Simmons Jr.

and R.D. Smith

Electrophilic addition

Creation of a cyclopropane ring via an organozinc carbenoid that reacts with an alkene (or alkyne).

1967 O. Mitsunobu

R.F. Heck couplings Used frequently in the synthesis of

R-X+R' $\xrightarrow{P\lambda^{\circ}}$ R' $\nearrow R$

such as an ester, using diethyl azodicarboxylate (DEAD) or diisopropyl azodicarboxylate (DIAD).

> **1970 Heck reaction** T. Mizoroki and

Transition metal-catalyzed heterocyclic compounds the reaction of aryl halides or vinyl halides with activated alkenes in the presence of a Palladium-catalyst along with a

Mitsunobu reaction **Nucleophilic substitution** reactions

Converts an alcohol into a variety of functional groups, triphenylphosphine and an azodicarboxylate such as

base for C-C bond formation.

1978 Luche reduction J.L. Luche

Reduction reactions The selective organic reduction of α , β -unsaturated ketones to allylic alcohols with sodium borohydride (NaBH₄) and lanthanide chlorides, such as cerium (III) chloride (CeCl₂), in methanol or ethanol.

1976 Negishi cross-coupling

reaction E. Negishi Transition metal-catalyzed couplings The Negishi reaction is the coupling of organo zinc compounds catalysed by Pd or Ni catalyst. Typically ArZnX + RX ---> Ar-R + ZnX_o

1974 **Rubottom oxidation**

G.M. Rubottom, A.G. Brook

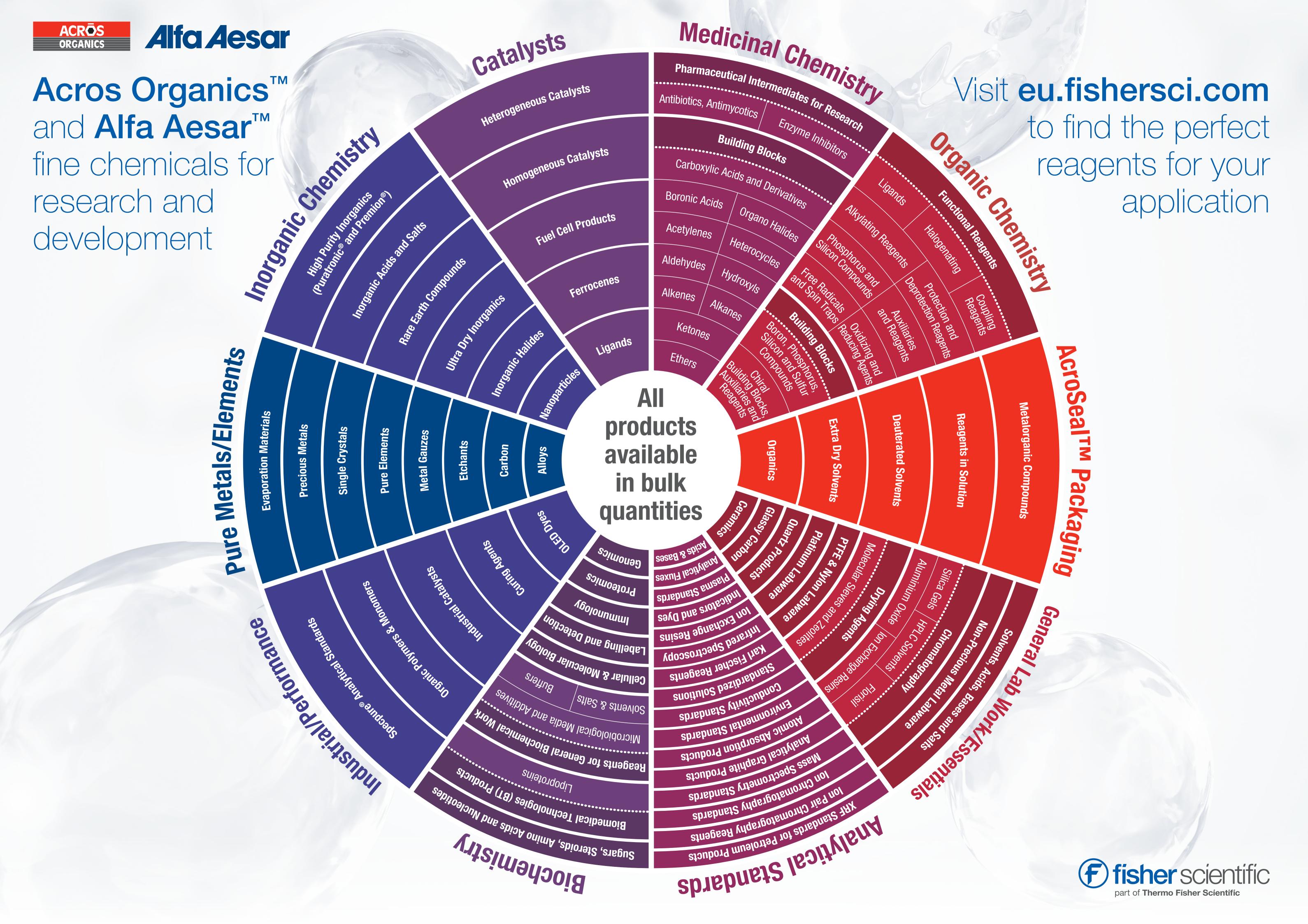
and A. Hassner Used for the synthesis of α -hydroxy ketones through reaction of silyl enol ethers with mCPBA, and subsequent rearrangement.

1983

2000

Dess-Martin oxidation D.B. Dess and A. Martin

Oxidation Oxidation of primary alcohols to aldehydes and secondary alcohols to ketones via use of the Dess-Martin periodinane (DMP) reagent.


1980 Sharpless asymmetric epoxidation K.B. Sharpless and T. Katsuki

Oxidation Used to prepare 2,3-epoxyalcohols from primary and secondary allylic alcohols. The reaction is catalyzed via a mixture of titanium tetra(isopropoxide)

and diethyl tartrate.

